Decomposition and Visualization of Fourth-Order Elastic-Plastic Tensors

نویسندگان

  • Alisa Neeman
  • Rebecca M. Brannon
  • Boris Jeremic
  • Allen Van Gelder
  • Alex T. Pang
چکیده

Visualization of fourth-order tensors from solid mechanics has not been explored in depth previously. Challenges include the large number of components (3x3x3x3 for 3D), loss of major symmetry and loss of positive definiteness (with possibly zero or negative eigenvalues). This paper presents a decomposition of fourth-order tensors that facilitates their visualization and understanding. Fourth-order tensors are used to represent a solid’s stiffness. The stiffness tensor represents the relationship between increments of stress and increments of strain. Visualizing stiffness is important to understand the changing state of solids during plastification and failure. In this work, we present a method to reduce the number of stiffness components to second-order 3x3 tensors for visualization. The reduction is based on polar decomposition, followed by eigen-decomposition on the polar "stretch". If any resulting eigenvalue is significantly lower than the others, the material has softened in that eigen-direction. The associated second-order eigentensor represents the mode of stress (such as compression, tension, shear, or some combination of these) to which the material becomes vulnerable. Thus we can visualize the physical meaning of plastification with techniques for visualizing second-order symmetric tensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of Large-strain Damage Elastoplasticity

Abstract-The elastoplastic constitutive analysis which utilizes the model of multiplicative decomposition of the defo~ation gradient into its elastic and plastic parts has been mainly developed and applied to elastically isotropic materials, which remain isotropic during the process of plastic deformation. This paper extends the application of the model to materials that change their elastic pr...

متن کامل

Euler-Rodrigues and Cayley formulas for rotation of elasticity tensors

It is fairly well known that rotation in three dimensions can be expressed as a quadratic in a skew symmetric matrix via the Euler-Rodrigues formula. A generalized Euler-Rodrigues polynomial of degree 2n in a skew symmetric generating matrix is derived for the rotation matrix of tensors of order n. The Euler-Rodrigues formula for rigid body rotation is recovered by n = 1. A Cayley form of the n...

متن کامل

On the theory of fourth-order tensors and their applications in computational mechanics

Many problems concerned with the mathematical treatment of fourth-order tensors still remain open in the literature. In the present paper they will be considered in the framework of a complete theory involving a set of notations and de®nitions, a tensor operation algebra, di€erentiation rules, eigenvalue problems, applications of fourth-order tensors to isotropic tensor functions and some other...

متن کامل

Fourth-order Tensors with Multidimensional Discrete Transforms

The big data era is swamping areas including data analysis, machine/deep learning, signal processing, statistics, scientific computing, and cloud computing. The multidimensional feature and huge volume of big data put urgent requirements to the development of multilinear modeling tools and efficient algorithms. In this paper, we build a novel multilinear tensor space that supports useful algori...

متن کامل

Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.

The apparent stiffness tensor is an important mechanical parameter for characterizing trabecular bone. Previous studies have modeled this parameter as a function of mechanical properties of the tissue, bone density, and a second-order fabric tensor, which encodes both anisotropy and orientation of trabecular bone. Although these models yield strong correlations between observed and predicted st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008